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1 Necessary Condition for Correctable Errors

Knill-Laflamme conditions specify what kinds of error can a quantum error correcting code
correct. Last lecture, we ended with the definition of a quantum error correcting code.
A QECC C is a subspace which is contained in some larger Hilbert space C ⊆ Hphisical.
Typically Hphisical will be the state of all n-qbit states. Given you code C, we say that it
corrects a set of errors E if there exists a recovery algorithm Rec such that for all |ψ⟩ ∈ C
and E ∈ E :

Rec(
1

√
pE|ψ

E |ψ⟩) = |ψ⟩

where pE|ψ = ⟨ψ|E†E |ψ⟩. We can think of pE|ψ as a probability value that the quantum
channel decides to apply error E. In general, the probability that a quantum channel applies
a given error might actually depend on the state |ψ⟩. We can mathematically model this as
a quantum circuit:

input 1√
pE|ψ

E |ψ⟩
URec

|ψ⟩ output

ancilla |0⟩
∣∣syndE|ψ

〉
junk

URec is called the recovery unitary, it takes in 1√
pE|ψ

E |ψ⟩ as input and recovers the original

codeword |ψ⟩. Last lecture we said that the junk register of the output can be interpreted
as a syndrome register, which records what error was applied to the state |ψ⟩. Here we will
allow

∣∣syndE|ψ
〉
to depend on both E and ψ. Mathematically, we can write this as

URec
( 1
√
pE|ψ

E |ψ⟩ ⊗ |0⟩
)
= |ψ⟩ ⊗

∣∣syndE|ψ
〉
,

which can be rewritten as

URecE |ψ⟩ ⊗ |0⟩ = |ψ⟩ ⊗
(√

pE|ψ
∣∣syndE|ψ

〉 )
.

Because the expression on the left is a linear function of |ψ⟩, the right hand side must also
be a linear function of |ψ⟩. So

√
pE|ψ

∣∣syndE|ψ
〉
should be a constant independent of |ψ⟩.
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We will denote the constant
√
pE|ψ

∣∣syndE|ψ
〉
=

√
pE |syndE⟩. This means that as long as

|ψ⟩ ∈ C and E ∈ E , the probability of applying errors does not depend on the state |ψ⟩.
Intuitively, suppose there is a quantum channel that where the error probability is dependent
on the state |ψ⟩, then by learning what error occurred, we would actually learn something
about the state |ψ⟩. But if we learn something about |ψ⟩, the state would collapse. Therefore
the error being independent of |ψ⟩ is a general property that we want. In addition, this also
shows that the syndrome state is independent of |ψ⟩. We saw an example last lecture that
in the Shor 9-qbit code [Sho95], the syndrome only records the error applied to the code and
does not depend on |ψ⟩.

Let us consider applying the process 2 times and take the dot product, then(
⟨ψ2|E†

2 ⊗ ⟨0|
)
U †
RecURec

(
E1 |ψ1⟩ ⊗ |0⟩

)
=
(
⟨ψ2| ⊗

√
pE2 ⟨syndE2 |

)(
|ψ1⟩ ⊗

√
pE1 |syndE1⟩

)
Simplifying the equaiton above, we obtain

⟨ψ2|E†
2E1 |ψ1⟩ = ⟨ψ2|ψ1⟩

√
pE1pE2 ⟨syndE2|syndE1⟩

for all ψ1, ψ2 ∈ C and E1, E2 ∈ E . Here √
pE1pE2 ⟨syndE2|syndE1⟩ measures overlap between

E1 and E2. Let us consider two special cases:

• Case 1 (|ψ1⟩ ⊥ |ψ2⟩): Then we would have ⟨ψ2|ψ1⟩ = 0 so ⟨ψ2|E†
2E1 |ψ1⟩ = 0. This is

a necessary property for any error correcting code to satisfy. Suppose we apply E1 to
|ψ1⟩ and E2 to |ψ2⟩. Since |ψ1⟩ and |ψ2⟩ are orthogonal, we would need E1 |ψ1⟩ and
E2 |ψ2⟩ to be orthogonal as well. If they were not orthogonal, then no recovery process
can turn them into orthogonal states |ψ1⟩ and |ψ2⟩, therefore the code would not be
reliable.

• Case 2 (E1 = E2): Then we have 1√
pE1

pE2
⟨ψ2|E†

2E1 |ψ1⟩ = ⟨ψ2|ψ1⟩. This says that if

we have two different states |ψ1⟩ and |ψ2⟩, and then we apply the same error to them,
then the resulting states will have the same inner product as what we started with,
which is exactly what we need. Intuitively, the errors act on the states as rotations.
And all we have to do to correct the errors is to undo the rotation.

2 Knill-Laflamme Theorem

Theorem 2.1 (Knill-Laflamme [KLV00]). The set of errors E that are correctable on a code
C if and only if

⟨ψ1|E†
1E2 |ψ2⟩ = ⟨ψ1|ψ2⟩ ·OE1,E2 (1)

holds for all |ψ1⟩ , |ψ2⟩ ∈ C and E1, E2 ∈ E, where OE1,E2 is a constant depending on E1, E2.

Remark 2.2. Although Knill-Laflamme theorem states that if condition (1) is satisfied, then
a recovery algorithm exists, we might not be able to construct it if we don’t know exactly
what the errors are. In addition, the recovery algorithm may be inefficient.
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We’ve already shown one direction of the theorem: if the set of errors are correctable on
the code C then this condition is implied. We will now prove the other direction. First, we
will state several equivalent ways of writing condition (1).

Proposition 2.3. Condition (1) in Theorem 2.1 is equivalent to:

• Let {|x⟩}x∈{0,1}k be an orthonormal basis of C. Then

⟨x|E†
1E2 |y⟩ = δx,y ·OE1,E2 (2)

holds for all basis vector x, y ∈ {|x⟩}x∈{0,1}k .

• Let {|x⟩}x∈{0,1}k be an orthonormal basis of C and {E1, ..., Em} be a basis for E . Then

⟨x|E†
aEb |y⟩ = δx,y ·OEa,Eb (3)

holds for all basis vector x, y ∈ {|x⟩}x∈{0,1}k and Ea, Eb ∈ {E1, ..., Em}.

• For all |ψ⟩ ∈ C,E ∈ E,
pE|ψ = pE = constant. (4)

where pE|ψ = ⟨ψ|E†E |ψ⟩ = OE,E.

The proof can be easily completed using that fact that ⟨ψ1|E†
1E2 |ψ2⟩ is a multilinear

map with respect to ψ1, ψ2, E1, E2. Note that a sufficient condition for equation (2) is:

⟨x|E†
aEb |y⟩ = δx,yδa,b (5)

for all basis vectors x, y and basis operators Ea, Eb. Now in this special case, we can construct
a recovery map by

URec :
1

√
pEa

Ea |x⟩ 7→ |x⟩ ⊗ |a⟩ (6)

where |a⟩ is the syndrome. However, the sufficient condition given by Eq. (5) is not satisfied
when there is degeneracy. For example in the Shor 9-qbit code:

Z1 |ψ⟩L = Z2 |ψ⟩L

so
⟨ψ|L Z

†
1Z2 |ψ⟩L = 1

which does not satisfy condition (5).
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3 Proof of Knill-Laflamme Theorem

We will now complete the proof of the Knill-Laflamme Theorem by showing that a recovery
algorithm URec exists if the Knill-Laflamme condition is satisfied.

Proof. (Theorem 2.1) Using the equivalent condition given by Eq. (3), let us show that
condition (3) implies the existence of a correction algorithm URec. Condition (3) implies
that {Ei |x⟩}1≤i≤m is orthogonal to {Ei |y⟩}1≤i≤m. Let Sx = span{Ei |x⟩}1≤i≤m and Sy =
span{Ei |y⟩}1≤i≤m. Since ⟨x|E†

aEb |x⟩ = Oa,b. The angle between Ea |x⟩ and Eb |x⟩ is equal
to the angle between Ea |y⟩ and Eb |y⟩ as illustrated by the figure below:

|x⟩

|y⟩

Ea |x⟩

Eb |x⟩

|vx,a⟩

|vx,b⟩

θ

Eb |y⟩

Ea |y⟩

|vy,b⟩

|vy,a⟩

θ

Therefore, there exists an orthonormal basis {|vx,i⟩}1≤i≤m of Sx such that Ea |x⟩ =∑
iCa,i |vx,i⟩ where Ca,i does not depend on x. We can now define URec on the basis {|vx,i⟩}.

URec |vx,i⟩ = |x⟩ ⊗ |i⟩ .

Then

URecEa |x⟩ =
∑
i

Ca,iURec |vx,i⟩ =
∑
i

Ca,i |x⟩ ⊗ |i⟩ = |x⟩ ⊗

(∑
i

Cai |i⟩

)
holds for all basis vector |x⟩ and Ea, where

∑
iCai |i⟩ is the syndrome |syndEa⟩. Then by

linearity, URec is a recovery algorithm for all E ∈ E and |ψ⟩ ∈ C which completes the
proof.

Let us take a closer look at this proof. Intuitively, we can also express |vx,i⟩ using
coordinates in the basis Sx:

|vx,i⟩ =
∑
a

C ′
a,iEa |x⟩ = Fi |x⟩ ,

where Fi =
∑

aC
′
a,iEa. Notice that {Fi}1≤i≤m is also a basis of E . So equivalently, we can

replace the errors {Ei}1≤i≤m with {Fi}1≤i≤m. Then we would have

⟨x|F †
i Fj |y⟩ = ⟨vx,i|vy,i⟩ = δx,yδi,j
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which is the special case of the Knill-Laflamme conditions given by Eq. (5) with a recovery
map given by Eq. (6).

Let us consider a channel Φ which acts by

Φ(|ψ⟩⟨ψ|) =
∑
i

Ei |ψ⟩⟨ψ|E†
i

for all Ei. Then
U |ψ⟩ |0⟩ =

∑
i

(Ei |ψ⟩)A ⊗ (|i⟩)E,

where U is the unitary corresponding to the noise channel Φ. Here |i⟩ is the environment
resister and we can obtain the action of the channel by tracing out the environment register.
However, let us trace out the register corresponding to the noisy codeword

TrA

(∑
i

Ei |ψ⟩ ⊗ |i⟩ ·
∑
j

⟨ψ|E†
j ⊗ ⟨j|

)
=
∑
i,j

TrA

(
Ei |ψ⟩⟨ψ|E†

j ⊗ |i⟩⟨j|
)

=
∑
i,j

Tr
(
Ei |ψ⟩⟨ψ|E†

j

)
· |i⟩⟨j|

=
∑
i,j

⟨ψ|E†
jEi |ψ⟩ · |i⟩⟨j|

=
∑
i,j

Oi,j · |i⟩⟨j|

We would notice that the result is independent of the codeword |ψ⟩. So the state that the
environment gets after applying a noise is independent of the codestate. This means that
the environment does not learn anything about your state and information is not lost.
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